This line shapefile depicts geological folds within the offshore area of Ventura, California. The map area is in the Ventura Basin, in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland (Fisher and others, 2009). This province has undergone significant north-south compression since the Miocene, and recent GPS data suggest north-south shortening of about 6 to 10 mm/yr (Larson and Webb, 1992; Donnellan and others, 1993). The active, north-verging Oak Ridge Fault and the south-verging Pitas Point-Ventura Fault are two of the structures on which this shortening occurs (for example, Sorlien and others, 2000; Fisher and others, 2005, 2009). High-resolution seismic-reflection profiles (sheet 8, SIM 3254) reveal that neither fault ruptures the surface; instead, the surface expression of each fault is a narrow, asymmetric fold that involves the uppermost Pleistocene and Holocene (less than 21 ka) sedimentary section. Both structures are inferred to be parts of long fault systems that extend for more than 100 km, representing important potential earthquake hazards (for example, Fisher and others, 2009). Shortening is also occurring on the Montalvo Fault and Anticline system along the southeast edge of the map area (part of the broader Oak Ridge Fault Zone; Yeats, 1998) and on the Rincon-Ventura Avenue Anticline (for example, Rockwell and others, 1988), which crosses the northwest edge of the map area. The map that shows these data is published in Scientific Investigations Map 3254, "California State Waters Map Series--Offshore of Ventura, California." This layer os part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. U.S. Geological Survey. (2013). Folds: Offshore of Ventura, California, 2013. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/cv835rk7135. Map political location: Ventura County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see sheet 2, SIM 3254, for more information). . References Cited Donnellan, A., Hager, B.H., and King, R.W., 1993, Discrepancy between geologic and geodetic deformation rates in the Ventura basin: Nature, v. 346, p. 333?336. Fisher, M.A., Greene, H.G., Normark, W.R., and Sliter, R.W., 2005, Neotectonics of the offshore Oak Ridge fault near Ventura, southern California: Bulletin of the Seismological Society of America, v. 95, p. 739?744. Fisher, M.A., Sorlien, C.C., and Sliter, R.W., 2009, Potential earthquake faults offshore southern California from the eastern Santa Barbara channel to Dana Point, in Lee, H.J., and Normark, W.R., eds., Earth science in the urban ocean--The Southern California Continental Borderland: Geological Society of America Special Paper 454, p. 271-290. Larson, K.M., and Webb, F.H., 1992, Deformation in the Santa Barbara Channel from GPS measurements 1987-1991: Geophysical News Letters, v. 19, p. 1,491-1,494. Rockwell, T.K., Keller, E.A., and Dembroff, G.R., 1988, Quaternary rate of folding of the Ventura Avenue anticline, western Transverse Ranges, southern California: Geological Society of America Bulletin, v. 100, p. 850-858. Sorlien, C.C., Gratier, J.P., Luyendyk, B.P., Hornafius, J.S., and Hopps, T.E, 2000, Map restoration of folded and faulted late Cenozoic strata across the Oak Ridge fault, onshore and offshore Ventura basin, California: Geological Society of America Bulletin, v. 112, p. 1,080-1,090. Yeats, R.S., 1998, North-vergent thick-skinned or south-vergent thin-skinned Oak Ridge fault--A view from the coast, in Kunitomi, D.S., Hopps, T.E., and Galloway, J.M., eds., Structure and petroleum geology, Santa Barbara Channel, California: American Association of Petroleum Geologists, Pacific Section and Coast Geological Society, Miscellaneous Publication 46, p. 143-152. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.